Advanced Methodologies for Bayesian Networks

August 22, 2017

The 3rd Workshop on Advanced Methodologies for Bayesian Networks is being run in Kyoto September 20-22, 2017.  I’ll be talking about our (with François Petitjean, Nayyar Zaidi and Geoff Webb) recent work with Bayesian Network Classifiers:

Backoff methods for estimating parameters of a Bayesian network

Various authors have highlighted inadequacies of BDeu type scores and this problem is shared in parameter estimation. Basically, Laplace estimates work poorly, at least because setting the prior concentration is challenging. In 1997, Freidman et al suggested a simple backoff approach for Bayesian network classifiers (BNCs). Backoff methods dominate in in n-gram language models, with modified Kneser-Ney smoothing, being the best known, and a Bayesian variant exists in the form of Pitman-Yor process language models from Teh in 2006. In this talk we will present some results on using backoff methods for Bayes network classifiers and Bayesian networks generally. For BNCs at least, the improvements are dramatic and alleviate some of the issues of choosing too dense a network.

Its built on the amazing Chordalysis system of François Petitjean, and the code is available as HierarchicalDirichletProcessEstimation.  Boy, Nayyar and François really can do good empirical work!


Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: